lrxin-腐蚀科学与防护专业导师吴欣强

博士生招生导师

腐蚀科学与防护专业导师吴欣强

时间:2014-06-17 10:24 来源:中科院金属研究所研究生部 作者:admin 点击:

【个人简历】

吴欣强,男,中国科学院金属研究所研究员,博士生导师。现为国际核反应堆水化学委员会核心成员、中国腐蚀与防护学会青年工作委员会副主任、中国腐蚀与防护学会环境敏感断裂专业委员会副秘书长、中国腐蚀与防护学会耐蚀金属材料专业委员会委员、中国腐蚀与防护学会电网腐蚀防护与安全专业委员会委员;《Indian Journal of Chemical Technology》、《中国腐蚀与防护学报》、《腐蚀科学与防护技术》编委。

197112月生于湖北省赤壁市;19937月毕业于哈尔滨船舶工程学院金属材料与热处理专业获学士学位;19962月毕业于哈尔滨工程大学机械学专业获硕士学位;19996月毕业于中国科学院金属研究所材料学专业获博士学位;20012月至20022月赴韩国科学技术院(KAIST)、20023月至20053月赴日本国立物质 材料研究机构(NIMS)从事轻水堆核电站关键设备材料服役损伤研究;20057月入选中国科学院金属研究所引进优秀学者20089月晋升为研究员;2011 4月被评为博士生导师。

主要从事材料高温高压水服役损伤行为与评价技术研究。以能源安全为背景,研究现役和大型先进压水堆核电站及第四代超临界水冷堆、液态金属堆关键设备材料的服役行为、国产化、运行水化学优化、在线监检测原理与方法、寿命设计与评价技术;同时涉及超超临界火电机组关键设备材料的服役损伤评价、超临界水氧化处理新技术的开发及关键设备选材、超临界水热合成原理与工艺研究,以及新型耐蚀材料研发及腐蚀性能评价等工作。负责了国家自然科学基金面上项目、重点项目专题、973项目子课题和专题、国家科技重大专项专题、中科院重大仪器研制项目及企业横向技术开发等30余项课题。研究成果得到国际著名核电机构如IAEAEPRIAECLKAERI及国内核电设计、安审、制造、运行和研究单位的关注和认可,部分授权专利技术已应用于国内核电企业。发表学术论文260余篇,SCI收录102篇,SCI引用1800余次,他引1400余次。授权国家发明专利19项,实用新型专利14项。编制核学会材料试验标准2项,1项已正式发布(T/CNS 4-2018)。指导毕业博士生14名,其中3名博士生分别获201220132014年度中国科学院院长优秀奖,3名博士生获国家奖学金;指导毕业硕士生4名,其中1名获2009年度辽宁省优秀硕士论文奖;目前在读博士生5名。 

【主要研究方向】

(1)     核电高温高压循环水和超临界水模拟设备与实验技术

(2)     高温高压水腐蚀电化学及在线监检测技术

(3)     核电运行水化学对设备材料腐蚀损伤的影响机理与参数优化

(4)     核电材料高温高压水腐蚀疲劳行为及环境疲劳评价模型

(5)     液态金属腐蚀模拟试验技术与评价方法

(6)     超临界水腐蚀损伤及超临界水氧化与水热合成技术

(7)     高温高压液相环境中材料服役损伤失效分析与对策

(8)     新型耐蚀材料研发及其耐蚀性能评价 

【联系方式】

辽宁省沈阳市文萃路62号中国科学院金属研究所南区环境腐蚀中心  110016

办公电话:024-23915898      电子邮件: xqwu@imr.ac.cn

网页链接:http://crm-eac.imr.ac.cn/clj-wuxinqiang.asp 

【获奖情况】

(1)     2018年:《压水堆核电高温高压水环境材料损伤关键测试技术及成套装备与应用》获国家技术发明奖二等奖(排名第二)。

(2)     2018年:《核电材料测试技术与成套装备及安全评价应用》获得中国科学院科技促进发展奖(排名第三)。

(3)     2017年:《压水堆核电站冷却剂影响关键设备材料疲劳寿命试验研究》获中国核能行业协会科学技术奖二等奖(排名第六);

(4)     2017年:《三种压水堆核电站三种先进水化学技术研究》获中国核工业集团公司科学技术奖三等奖(排名第七);

(5)     2017年:《重工业污染区输电线路杆塔和接地网腐蚀防治技术研究与示范》获得湖南省电力科学技术奖二等奖及国网湖南省电力有限公司科学技术进步奖一等奖(排名第七)。

(6)     2016年:《压水堆核电高温高压水环境材料损伤关键测试技术装备与应用》获中国核能行业协会科学技术奖(发明)一等奖(排名第二)。 

【主要论文】

(1)     J. Gao, J. B. Tan, X. Q. Wu*, S. Xia, Effect of grain boundary engineering on corrosion fatigue behavior of 316LN stainless steel in borated and lithiated high-temperature water, Corrosion Science, 2019, in press.

(2)     Z. Zhang, X. Q. Wu*, J. B. Tan, In-situ monitoring of stress corrosion cracking of 304 stainless steel in-high temperature water by analyzing acoustic emission waveform, Corrosion Science, 146, 2019, 90-98.

(3)     Z. Y. Zhang, J. B. Tan, X. Q. Wu*, E.-H. Han, W. Ke, J. C. Rao, Effects of temperature on corrosion fatigue behavior of 316LN stainless steel in high temperature pressurized water, Corrosion Science, 146, 2019, 80-89.

(4)     J. P. Liao, J. B. Tan, X. Q. Wu*, L. C. Tang, H. Qian, Y. C. Xie, Effects of normal load on fretting corrosion fatigue of Alloy 690 in 285oC pure water, Corrosion Science, 141, 2018, 158-167.

(5)     J. P. Liao, X. Q. Wu*, J. B. Tan, L. C. Tang, H. Qian, Y. C. Xie, Fretting corrosion fatigue of Alloy 690 in high-temperature pure water, Corrosion Science, 133, 2018, 423-431.

(6)     D. X. Chen, E.-H. Han*, X. Q. Wu, Effects of crevice geometry on oxidation behavior of 304 stainless steel during crevice corrosion in high temperature pure water, Corrosion Science, 111, 2016, 518-530.

(7)     J. B. Tan, X. Q. Wu*, E.-H. Han, X. Q. Liu, X. L. Xu, H. T. Sun, The effect of dissolved oxygen on fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water, Corrosion Science, 102, 2016, 394-404.

(8)     X. Y. Zhong, X. Q. Wu*, E.-H. Han, Effects of exposure temperature and time on corrosion behavior of a ferritic-martensitic steel P92 in aerated supercritical water, Corrosion Science, 90, 2015, 511-521.

(9)     J. B. Tan, X. Q. Wu*, E.-H. Han, We Ke, X. Q. Liu, F. J. Meng, X. L. Xu, Corrosion fatigue behavior of Alloy 690 steam generator tube in borated and lithiated high temperature water, Corrosion Science, 89, 2014, 203-213.

(10) J. B. Tan, X. Q. Wu*, E.-H. Han, We Ke, X. Q. Liu, F. J. Meng, X. L. Xu, Role of TiN inclusion on corrosion fatigue behavior of Alloy 690 steam generator tubes in borated and lithiated high temperature water, Corrosion Science, 88, 2014, 349-359. 

(11) X. Liu, E.-H. Han*, X. Q. Wu, Effects of pH value on characteristics of oxide films on 316L stainless steel in Zn-injected borated and lithiated high temperature water, Corrosion Science, 78, 2014, 200-207.

(12) X. Liu, X. Q. Wu*, E.-H. Han, Electrochemical and surface analytical investigation of the effects of Zn concentrations on characteristics of oxide films on 304 stainless steel in borated and lithiated high temperature water, Electrochimica Acta, 108, 2013, 554-565.

(13) J. Xu, X. Q. Wu*, E.-H. Han, Acoustic emission response of sensitized 304 stainless steel during intergranular corrosion and stress corrosion cracking, Corrosion Science, 73, 2013, 262-273.

(14) W. Kuang, X. Q. Wu*, E.-H. Han, Influence of dissolved oxygen concentration on the oxide film formed on Alloy 690 in high temperature water, Corrosion Science, 69, 2013, 2013, 197-204.

(15) X. Y. Zhong, E.-H. Han*, X. Q. Wu*, Corrosion behavior of Alloy 690 in aerated supercritical water, Corrosion Science, 66(1), 2013, 369-379.

(16) J. Xu, X. Q. Wu*, E.-H. Han, The evolution of electrochemical behaviour and oxide film properties of 304 stainless steel in high temperature aqueous environment, Electrochimica Acta, 71(6), 2012, 219-226.

(17) X. Liu, X. Q. Wu*, E.-H. Han, Effect of Zn injection on established surface oxide films on 316L stainless steel in borated and lithiated high temperature water, Corrosion Science, 65(12), 2012, 136-144.

(18) W. Kuang, X. Q. Wu*, E.-H. Han, Influence of dissolved oxygen concentration on the oxide film formed on 304 stainless steel in high temperature water, Corrosion Science, 63(10), 2012, 259-266.

(19) J. Xu, E.-H. Han*, X. Q. Wu*, Acoustic emission response of 304 stainless steel during constant load test in high temperature aqueous environment, Corrosion Science, 63(10), 2012, 91-99.

(20)H. Sun, X. Q. Wu*, E.-H. Han, Y. Z. Wei, Effects of pH and dissolved oxygen on electrochemical behavior and oxide films of 304SS in borated and lithiated high temperature water, Corrosion Science, 59(6), 2012, 334-342.

(21)W. Kuang, X. Q. Wu*, E. H. Han, J. C. Rao, The mechanism of oxide film formation on Alloy 690 in oxygenated high temperature water, Corrosion Science, 53(11), 2011, 3853-3860.

(22)X. Liu, X. Q. Wu*, E.-H. Han, Influence of Zn injection on characteristics of oxide film on 304 stainless steel in borated and lithiated high temperature water, Corrosion Science, 53(10), 2011, 3337-3345.

(23) J. Huang, X. Liu, E.-H. Han*, X. Q. Wu*, Influence of Zn on oxide films on Alloy 690 in borated and lithiated high temperature water, Corrosion Science, 53(10), 2011, 3254-3261.

(24)W. Kuang, X. Q. Wu*, E. H. Han, Effect of alternately changing the dissolved Ni ion concentration on the oxidation of 304 stainless steel in oxygenated high temperature water, Corrosion Science, 53(8), 2011, 2582-2591.

(25)J. Xu, X. Q. Wu*, E.-H. Han, Acoustic emission during pitting corrosion of 304 stainless steel, Corrosion Science, 53(4), 2011, 1537-1546.

(26)W. Kuang, X. Q. Wu*, E. H. Han, L. Ruan, Effect of nickel ion from autoclave material on oxidation behavior of 304 stainless steel in oxygenated high temperature water, Corrosion Science, 53(3), 2011, 1107-1114.

(27) J. Xu, X. Q. Wu*, E.-H. Han, The acoustic emission during electrochemical corrosion of 304 stainless steel in H2SO4 solutions, Corrosion Science, 53(1), 2011, 448-457.

(28) W. Kuang, X. Q. Wu*, E. H. Han, The oxidation behavior of 304 stainless steel in oxygenated high temperature water, Corrosion Science, 52(12), 2010, 4081-4087.

(29)W. Kuang, E.-H. Han*, X. Q. Wu, J. C. Rao, Microstructural characteristics of the oxide scale formed on 304 stainless steel in oxygenated high temperature water, Corrosion Science, 52(11), 2010, 3654-3660.

(30)J. Huang, X. Q. Wu*, E.-H. Han, Electrochemical properties and growth mechanism of passive films on Alloy 690 in high-temperature alkaline environments, Corrosion Science, 52(10), 2010, 3444-3452.

(31) J. Huang, X. Q. Wu*, E.-H. Han, Influence of pH on electrochemical properties of passive films formed on Alloy 690 in high temperature aqueous environments, Corrosion Science, 51(12), 2009, 2840-2847.

(32) H. Sun, X. Q. Wu*, E.-H. Han, Effects of temperature on the oxide film properties of 304 stainless steel in high temperature lithium borate buffer solution, Corrosion Science, 51(12), 2009, 2976-2982.

(33) H. Sun, X. Q. Wu*, E.-H. Han, Effects of temperature on the protective property, structure and composition of the oxide film on Alloy 625, Corrosion Science, 51(11), 2009, 2565-2572.

(34)M. C. Sun, X. Q. Wu*, Z. E. Zhang, E.-H. Han, Oxidation of 316 stainless steel in supercritical water, Corrosion Science, 51(5), 2009, 1069-1072.

(35) Y. Fu, X. Q. Wu*, E.-H. Han, W. Ke, K. Yang, Z. H. Jiang, Effects of nitrogen on the passivation of high nitrogen stainless steels in acidic chloride solutions, Electrochimica Acta, 54(16), 2009, 4005-4014.

(36)Y. Fu, X. Q. Wu*, E.-H. Han, W. Ke, K. Yang, Z. H. Jiang, Effects of cold work, sensitization treatment on the corrosion resistance of high nitrogen stainless steel in chloride solutions, Electrochimica Acta, 54(5), 2009, 1618-1629.

(37)X. Q. Wu*, Y. Katada, Strain rate dependence of low cycle fatigue behavior in a simulated BWR environment, Corrosion Science, 47(6), 2005, 1415-1428.

(38)X. Q. Wu*, H. M. Jing, Y. G. Zheng, Z. M. Yao, W. Ke, Resistance of molybdenum-bearing stainless steels and molybdenum-bearing stainless-steel coating to naphthenic acid corrosion and erosion-corrosion, Corrosion Science, 46(4), 2004, 1013-1032. 

【授权发明专利】

(1)     一种热工模拟台架ECP在线监测电极及其使用方法,专利号:ZL 2015 1 0273766. 1,授权日:2017.06.20.

(2)     一种能实现高温高压水电化学测试的陶瓷薄膜电极,专利号:ZL 2015 1 0141325. 6,授权日:2017.04.19.

(3)     一种缝隙腐蚀模拟试验研究的人工缝隙装置及使用方法,专利号:ZL 2013 1 0474104. 1,授权日:2015.07.15.

(4)     一种带高温高压循环水的慢拉伸实验装置及使用方法,专利号:ZL 2013 1 0452061.7,授权日:2016.03.02.

(5)     高温高压水中疲劳试样标距段应变的原位实时监测系统,专利号:ZL 2013 1 0554160. 6,授权日:2016.01.13.

(6)     一种带高温高压循环水的腐蚀疲劳试验装置,专利号:ZL 2010 1 0240899. 6,授权日:2013.10.16.

(7)     实现高温高压水体系电化学测试的工作电极,专利号:ZL 2011 1 0282690. 0,授权日:2013.08.07.

(8)     一种带声发射测试的高温高压循环水恒载拉伸实验装置,专利号:ZL 2011 1 0184583. 4,授权日:2013.06.19.

(9)     一种高温高压水腐蚀疲劳实验样品夹具及使用方法,专利号:ZL 2010 1 0240911. 3,授权日:2013.02.13.

(10)  一种高温高压水溶液pH值的测量方法,专利号:ZL 2008 1 0013139.4,授权日:2012.10.08.

(11)  实现高温高压水溶液体系电化学测试的工作电极及其制备,专利号:ZL 2008 1 0011046. 8,授权日:2012.07.04.

(12) 高温高压水循环控制系统及其控制方法,专利号:ZL 2009 1 0011110. 7,授权日:2012.06.27.

(13)  一种隔离大气和通气密闭容器的排气装置及其应用,专利号:ZL 2008 1 0011749. 0,授权日:2012.03.21.

(14)  高温高压水循环系统,专利号:ZL 2008 1 0230396. 3,授权日:2011.04.20.

(15) 一种精确控制水中溶解氧含量的系统及其应用,专利号:ZL 2008 1 0012594. 2,授权日:2010.06.09.

(16) 能够实现高温高压液体环境下原位光学观测的视镜及应用,专利号:ZL 2008 1 0012952. X,授权日:2010.09.08.

(17)  一种实现高温高压环境下加载的装置及其应用,专利号:ZL 2008 1 0228711. 9 授权日:2010.12.08.

(18) 超临界水中纳米铁酸钴的制备方法,专利号:ZL 2007 1 0010435. 4,授权日:2009.10.28.

(19)  高温高流速冲蚀实验装置,专利号:ZL 01106059. X,授权日:2004.11.17.